介電常數(shù)作為描述介電材料儲(chǔ)能性能的主要參數(shù)之一,理解其對(duì)介電材料開(kāi)發(fā)十分重要。"
介電常數(shù)(Dielectric Constant):也稱為電容率或相對(duì)電容率,表示材料存儲(chǔ)電荷能力的量度。它是材料在電場(chǎng)中極化程度的表征,影響電容器的儲(chǔ)能能力。
介質(zhì)損耗(Dielectric Loss):在交流電場(chǎng)中,材料極化跟不上電場(chǎng)變化導(dǎo)致的能量損耗。介質(zhì)損耗通常與介電常數(shù)一起用來(lái)描述材料的介電性能。
介電強(qiáng)度(Dielectric Strength):材料能夠承受的最大電場(chǎng)強(qiáng)度而不發(fā)生擊穿或?qū)щ姷男阅?。高介電?qiáng)度意味著材料具有更好的絕緣特性。
介電弛豫(Dielectric Relaxation):材料在電場(chǎng)作用下極化過(guò)程的時(shí)間依賴性,涉及極化和去極化的時(shí)間常數(shù)。
擊穿電壓(Breakdown Voltage):材料開(kāi)始導(dǎo)電的臨界電壓,是介電強(qiáng)度的量度。
01
—
概述
圖1電解質(zhì)與儲(chǔ)能原理
02
—
定義及物理意義
εr=ε介質(zhì)/ε真空
03
—
分子極性:分子的極性越強(qiáng),其分子間作用力也越強(qiáng),從而導(dǎo)致介電常數(shù)的增加。
分子大?。?/strong>分子越大,其電子云分布也越廣,極化程度越高,介電常數(shù)也越高。
偶極矩:分子極性通常由分子的偶極矩來(lái)表征,即正負(fù)電荷中心不重合導(dǎo)致的電荷分布不均勻。具有較大偶極矩的分子在外加電場(chǎng)中更容易被極化,從而增加材料的介電常數(shù)。
極化機(jī)制:極性分子在電場(chǎng)中會(huì)發(fā)生電子云的位移,導(dǎo)致分子的極化。這種極化包括電子極化、原子極化和取向極化,它們共同貢獻(xiàn)于材料的整體極化,從而影響介電常數(shù)。
分子間作用力:極性分子間的相互作用力(如偶極-偶極相互作用)通常比非極性分子間的相互作用力強(qiáng)。這種較強(qiáng)的分子間作用力可以增強(qiáng)分子間的耦合作用,進(jìn)而提高介電常數(shù)。
介電飽和:極性分子在電場(chǎng)中取向的能力會(huì)導(dǎo)致介電常數(shù)隨電場(chǎng)強(qiáng)度增加而增加,但當(dāng)所有分子盡可能與電場(chǎng)方向一致時(shí),將達(dá)到飽和,此時(shí)增加電場(chǎng)強(qiáng)度不再顯著增加介電常數(shù)。
頻率:介電常數(shù)隨著頻率的增加而變化,對(duì)于多數(shù)材料而言,頻率升高時(shí)介電常數(shù)會(huì)降低。
取向極化:在低頻電場(chǎng)中,極性分子有足夠的時(shí)間響應(yīng)電場(chǎng)的變化并重新排列,導(dǎo)致較高的介電常數(shù)。隨著頻率的增加,分子取向跟不上電場(chǎng)的變化,導(dǎo)致介電常數(shù)降低。
電子極化和原子極化:這些極化機(jī)制的響應(yīng)時(shí)間非??欤瑤缀蹩梢运查g響應(yīng)電場(chǎng)的變化,因此它們對(duì)頻率的變化不太敏感。
界面極化:在復(fù)合材料中,界面極化(如空間電荷極化)可能會(huì)在頻率較高時(shí)變得不那么有效,因?yàn)殡姾傻姆e累和松弛過(guò)程跟不上電場(chǎng)的快速變化。
松弛過(guò)程:許多材料的介電響應(yīng)涉及松弛過(guò)程,如聚合物鏈的重排或離子的遷移。這些過(guò)程在低頻下可以充分發(fā)生,但在高頻下可能被抑制。
介電弛豫:材料可能包含多個(gè)不同的極化機(jī)制,每個(gè)機(jī)制都有其特定的松弛時(shí)間和相應(yīng)的頻率響應(yīng)。在這些頻率附近,介電常數(shù)可能會(huì)出現(xiàn)顯著的變化。
德拜弛豫:對(duì)于具有德拜弛豫(一種特殊的極化弛豫過(guò)程)的材料,介電常數(shù)會(huì)隨著頻率的增加而降低,且在德拜弛豫頻率處有一個(gè)明顯的下降。
溫度:溫度的變化會(huì)影響分子的熱運(yùn)動(dòng),進(jìn)而改變介電常數(shù)。例如,在純?nèi)軇w系中,隨著溫度的升高,分子運(yùn)動(dòng)加快、排布更加無(wú)序,體系偶極矩減小,從而介電常數(shù)越小。
分子運(yùn)動(dòng)增加:隨著溫度的升高,分子的運(yùn)動(dòng)增加,導(dǎo)致分子間的相互作用減弱,這可能會(huì)減少材料的極化能力,從而降低介電常數(shù)。
結(jié)構(gòu)轉(zhuǎn)變:某些材料在特定的溫度下會(huì)發(fā)生相變,如從結(jié)晶態(tài)到非晶態(tài)的轉(zhuǎn)變,這可能會(huì)顯著改變其介電常數(shù)。
極化機(jī)制的變化:溫度的升高可能會(huì)激活或抑制某些極化機(jī)制。例如,偶極取向極化可能隨著溫度的升高而減少,因?yàn)榉肿拥臒徇\(yùn)動(dòng)使得它們難以與電場(chǎng)對(duì)齊。
電子極化的變化:在某些材料中,電子極化對(duì)溫度非常敏感,溫度的升高會(huì)增加電子的熱運(yùn)動(dòng),可能會(huì)增加或減少介電常數(shù),這取決于材料的具體電子結(jié)構(gòu)。
離子導(dǎo)電性:在離子導(dǎo)電材料中,溫度的升高會(huì)增加離子的移動(dòng)性,從而增加材料的電導(dǎo)率,這可能會(huì)通過(guò)電極化過(guò)程間接影響介電常數(shù)。
填料的介電常數(shù):在聚合物基復(fù)合材料中,添加不同介電常數(shù)的填料會(huì)改變復(fù)合材料的介電性能。高介電常數(shù)的填料有助于提高復(fù)合材料的介電常數(shù),但同時(shí)也可能降低其擊穿強(qiáng)度和增加介電損耗。
介電常數(shù)提升:向聚合物基體中添加具有高介電常數(shù)的填料是提高復(fù)合材料介電常數(shù)的主要策略。高介電常數(shù)填料的添加可以增加材料的整體極化能力,從而提升復(fù)合材料的介電常數(shù)。
擊穿強(qiáng)度和介電損耗的權(quán)衡:雖然高介電常數(shù)填料可以提升介電常數(shù),但同時(shí)也可能降低復(fù)合材料的擊穿強(qiáng)度并增加介電損耗。這是因?yàn)楦呓殡姵?shù)填料可能會(huì)在填料與聚合物界面間形成漏電流路徑。
界面極化效應(yīng):填料的介電常數(shù)影響其與聚合物基體之間的界面極化。高介電常數(shù)填料有助于增強(qiáng)界面極化,從而提升復(fù)合材料的介電常數(shù),尤其是當(dāng)填料的介電常數(shù)遠(yuǎn)高于基體聚合物時(shí)。
界面極化:在復(fù)合材料中,填料與聚合物基體之間的界面極化對(duì)低介電常數(shù)填料的影響更為明顯。
極化機(jī)制:界面極化是材料在電場(chǎng)作用下,由于界面處電荷分離而產(chǎn)生的極化現(xiàn)象。這種極化與材料的微觀結(jié)構(gòu)和界面特性密切相關(guān)。
界面面積增加:當(dāng)填料粒徑減小到納米尺度時(shí),填料與聚合物基體之間的界面面積顯著增加,導(dǎo)致更多的電子在界面上聚集,從而增強(qiáng)了界面極化,提升了復(fù)合材料的介電常數(shù)。
界面缺陷:填料和聚合物基體之間的界面缺陷,如空隙和微裂紋,可能會(huì)增加局部電場(chǎng)強(qiáng)度,從而增強(qiáng)界面極化,但這也可能增加介電損耗。
聚合物結(jié)晶度:聚合物的結(jié)晶度會(huì)影響其介電性能,因?yàn)榻Y(jié)晶區(qū)域和非結(jié)晶區(qū)域的極化能力不同.
分子鏈排列:結(jié)晶區(qū)域中的聚合物分子鏈比非結(jié)晶區(qū)域更加有序排列,這種有序性可能會(huì)限制分子的取向極化,從而影響介電常數(shù)。
極化能力:結(jié)晶區(qū)域的分子鏈運(yùn)動(dòng)受到限制,導(dǎo)致其極化能力降低。因此,結(jié)晶度較高的聚合物通常表現(xiàn)出比非結(jié)晶聚合物更低的介電常數(shù)。
自由體積:結(jié)晶度的增加可能會(huì)減少聚合物中的自由體積,從而限制分子鏈的移動(dòng)和旋轉(zhuǎn),這也可能降低聚合物的極化能力。
介電各向異性:結(jié)晶聚合物通常表現(xiàn)出介電各向異性,即在不同方向上的介電常數(shù)不同。結(jié)晶區(qū)域的有序性可能導(dǎo)致特定方向上的介電常數(shù)增加。
電話
微信掃一掃